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dependent reactions that create the energy rich molecule
ATP which is the energy currency of the cell) and pro-
tein synthesis[45] are initiated within the tube cell. By
15 minutes, RNA synthesis has begun and, even when
this RNA synthesis is blocked experimentally, the germi-
nation and early growth of the pollen tube proceeds[46].
This suggests that the RNA required for the early phases
of germination and tube growth is preformed in the
pollen tube cell and is ready for utilization.

Ultrastructural studies of pollen germination and tube
growth show that in the few minutes before emergence of
the pollen tube, structures called Golgi bodies are acti-
vated. These accept proteins from the endoplasmic retic-
ulum and bundle them into more complicated molecules.
These molecules are shipped out (so to speak) in packages
called vesicles[47], produced by the Golgi bodies. The
vesicles migrate and fuse locally with the pollen tube’s
boundary layer, called the plasma membrane, to form
the growing tip of the pollen tube. As they fuse with
the plasma membrane, the vesicles release their contents
of cell wall material that contribute to the lengthening
pollen tube. They also release enzymes that are believed
to help dissolve a pathway for the pollen tube through
the stylar tissue of the flower’s pistil[48],[49]. The starch
and lipid, stored in the amyloplasts and spherosomes, re-
spectively, are presumably utilized as energy sources and
provide raw materials for the construction of new cell
wall material and new plasma membrane during pollen
tube elongation.

When pollen grains of many plants are placed in water
for microscopic examination, they often will germinate
and form a short tube, but then they frequently rupture,
to release the cytoplasmic contents of the tube cell into
the water. As the cytoplasmic contents disperse into the
water, the more numerous and larger amyloplasts and
spherosomes are seen. Other organelles are too small
(ribosomes are about .02µm) to be seen with the light
microscope or too few (nucleus) to be easily spotted.

Jost[50] first suggested that, during pollen germina-
tion and pollen tube growth, sugar plays the role of os-
motically regulating the swelling and bursting of pollen
grains and tubes. However, Bilderback[51] demonstrated
that the pollen grains of some plants do not require
sugar to stabilize pollen growth and tube elongation.
Schumucker[52] recognized that boron plays an active
role during pollen tube growth. Its physiological be-
havior remained unknown until Dickinson[53] found that
boron binds in a reversible manner to growth-related sites
in the pollen tube. Calcium and potassium[54],[55],[56]
also have been found to be essential for stable growth of
pollen tubes. Weiseseel and Jaffe[57] were able to show
that potassium enters the tips of actively growing pollen
tubes. The directed growth of the pollen tube to the
plant egg may be due to a gradient of calcium, potas-
sium, hydrogen and chloride within the flower’s pistil,
extending from the stigma to the egg [58],[59]. The de-
tails of pollen tube evolution are an active subject of
research[60]. Observation of pollen tube growth makes

FIG. 3: Clarkia amoena pollen under the microscope ×400

an engaging student lab[61].
Artificial pollen incubation media did not begin to be

formulated until the beginning of the twentieth century.
Thus, Brown put pollen into water, observed the con-
tents of ruptured pollen grains, and discovered Brownian
motion instead of (rediscovering) the pollen tube.

V. MICROSCOPY

As mentioned in the Introduction, this section is writ-
ten in the first person.

Clarkia pulchella, variously called ragged robin,
elkhorn, pinkfairies and deerhorn (because of its four
three-pronged petals), is native to western North Amer-

FIG. 4: Clarkia elegans pollen under the electron microscope.
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ica. It can be found growing wild in parts of
British Columbia, Idaho, Montana, South Dakota and
Washington[62]. Indeed, I observed some sent to me that
grew wild near Missoula, Montana. However, a number
of companies sell Clarkia pulchella seeds[63], along with
seeds of Clarkia amoena (also called farewell-to-spring),
which grows wild in California, Oregon and Washing-
ton, and seeds of Clarkia elegans (also called unguiculata,
mountain garland) which grows wild in California. Seed
packets sell for just a few dollars. (Other Clarkia species,
of which 41 are known[64], are sold less frequently).

A. Growing Clarkia

Seed–growing advice is available on–line and in many
gardening books. Growing seeds indoors under lights is
not hard. Here is one person’s experience, which cer-
tainly can be improved upon. My aim was to do as little
as possible.

There are many seed growing systems available at gar-
dening stores, such as peat pots. I have had good results
with the Lee Valley Self-Watering Seed Starter[65], which
contains 24 compartments, watering via a felt capillary
mat, and a water level indicator. It can be left for about
a week before refilling with water. The mat should be
soaked before using. Lee Valley recommends using a soil-
less mixture containing sphagnum or peat, but I used a
commercial potting soil mix with added nutrients.

A shop light fixture with grow–light bulbs, or even or-
dinary fluorescent bulbs, can be used, with some arrange-
ment to raise the plants or lower the light fixture. How-
ever, I used a commercial stand with grow–lights which
is reasonably priced[66] and has a mechanism for raising
and lowering the fixture. A timer that kept the lights on
perhaps 16 hours a day completed the equipment.

Seeds may be meted out to the compartments from the
seam of a small folded piece of paper. The seeds germi-
nated in about a week to ten days. The bulbs should
be within a few inches of the tops of the plants, else the
plants become etoliated, i.e., spindly from lack of suffi-
cient light. After a few weeks to a month, I transferred
the seedlings to 4” pots, 24 of which fit in a tray (peri-
odically watered)[65]. As the plants grew, I staked them.
Flowers started to bloom after about ten weeks.

B. Qualitative

C. pulchella has four stamens (eight for elegans and
amoena) surrounding the pistil. I used a miniature Swiss
army knife scissors (a nail scissors will do as well) to cut
each filament so the anther fell on a microscope slide. I
used tweezers to hold an anther. If the anther had not
yet burst, I sliced it with a long sharp sewing needle to
reveal the pollen. If it had burst, usually some pollen had
fallen out of the anther and was already on the slide. In
either case, I scraped pollen out of the anther with the

FIG. 5: Desiccated Clarkia pulchella pollen

needle. I enjoyed observing what I was doing through
a low power binocular microscope, though this can be
done without one. C. pulchella pollen are little triangles,
which glowed in the light like diamonds.

I was surprised when I did the same with C. amoena
and C. elegans. I had not known that species of the same
genus could have differently shaped pollen, in this case
hexagons with protuberant lobes on alternate edges (Fig-
ures 3 and 4). The connection between the two shapes is
apparent (see Figure 5) when viewing a dry slide of des-
iccated C. pulchella pollen. Each appears as a membrane
surrounding the C. amoena/C. elegans pollen shape.

A drop of distilled water is put on the pollen on the
slide using a medicine dropper, followed by a cover slip
and then observed. One should follow Brown’s injunc-

FIG. 6: Bursting Clarkia pulchella pollen.
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FIG. 7: Bursting Clarkia elegans pollen.

FIG. 8: Clarkia pulchella pollen contents before dehiscence,
two superimposed photos taken 1 min apart, at ×400. The
scale is 2 µm per division.

tion to observe pollen from anthers either before dehis-
cence (i.e., before the anther has split open, releasing
the pollen) or soon thereafter. Most of the pollen do
not burst in water, and if one waits too many days after
dehiscence to make observations, none may burst, espe-
cially for C. pulchella. As pollen matures in the anther,
its outer membrane may grow more impervious to burst-
ing in water.

When first viewed, particles from the pollen were some-
times seen already on the slide: perhaps the pollen had
been damaged by the needle, or the pollen had rapidly

burst open as soon as the water was applied. I could
also see pollen bursting before my eyes, and the particles
streaming out (Figures 6, 7), like logs released from a
log–jam, usually in fits and starts. The particles at the
log–jam periphery diffuse away from the rest and can be
seen undergoing Brownian motion. The remainder are
packed closely, and the intracellular medium in which
they sit is viscous, so they show little or no Brownian
motion until the log–jam disperses.

C. Quantitative

There are many interesting phenomena one can inves-
tigate. Here are two brief studies, suggestive but by no
means definitive. For the first, we consider the distri-
bution of particle sizes emerging from Clarkia pulchella
pollen before and after dehiscence. For the second, we
consider Brownian motion and Brownian rotation of the
amyloplasts.

1. Observations

An Olympus BX-50 microscope, at ×400 was used. Its
resolution is cited as .45 µm, and its depth of focus as
2.5 µm. A microscope camera and five different computer
applications were employed,.

Fig. 8 shows two superimposed photos of C. pulchella
particles taken 1 minute apart, from pollen before dehis-
cence. The two pictures were enhanced in contrast and
treated differently in brightness and then superimposed,
using the program Photoshop Elements 2. A marvelous
free program, called ImageJ[67], enables precision mea-
surements on photographs. 73 particles in the upper left
quadrant of the viewing area (two time-displaced images
of each) were labeled. Each image’s long axis length, long
axis angle θ, x and y coordinates were measured. ImageJ
puts the results in an Excel worksheet.

Fig. 9 shows a photo of C. pulchella particles from
pollen after dehiscence. 89 particles in the lower left
quadrant were labeled and their lengths were measured.
A graph of number of particles per radius bin (radius
R ≡ 1/2×particle length, bin size =.25 µm) for both
photos appears in Fig. 10.

Qualitatively, this confirms what Brown said. There
are very few spherosomes visible in Fig. 8, taken from
pollen before dehiscence. The appearance after dehis-
cence, in Fig. 9, of many particles of apparent radius!
1µm, the “molecules,” or spherosomes that so excited
Brown, is strikingly apparent. These particles appear as
light or dark, depending upon their location with respect
to the microscope focal plane.

Fig. 10 presents a graph of what is observed in Figs.
8, 9. The distribution of numbers of particles with radii
above 1 µm before and after dehiscence appears to be
the same: these are the amyloplasts. However, there is a
peak in the number of particles with radii less than 1 µm
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FIG. 9: Clarkia pulchella pollen contents after dehiscence.
The scale is 2 µm per division.

FIG. 10: Number of particles (in a radius bin .25 µm wide)
vs radius in µm.

after dehiscence (and no such peak before dehiscence):
these are the spherosomes.

Quantitatively, there is a discrepancy between Brown’s
observation of the sizes of the amyloplasts and sphero-
somes, and what is depicted here: his sizes are larger.
As we have noted, Brown quotes the amyloplasts as hav-
ing average radius (half the long axis length) R ≈ 3 µm,
with maximum R ≈ 4 µm, whereas with our Olympus

microscope, on average R ≈ 2 µm, with maximum R ≈ 3
µm. And, he quotes the spherosome radii as ranging from
R ≈ .65 µm to R ≈ .85 µm, whereas with our Olympus
microscope, most spherosomes appear to cluster around
R ≈ .5± .05 µm, with maximum size about R ≈ .65± .05
µm.

To resolve this discrepancy in the case of the sphero-
somes, in section VC 2 below, lenses and their effect on
the image of a round object are discussed. Essentially,
due to diffraction, Brown’s lens and the Olympus micro-
scope both enhance the image beyond the actual size of
the object, but the Olympus microscope enhances the
image less than did Brown’s microscope. The theory,
described in section V C 3, is found to be in good agree-
ment with observations, of polystyrene spheres of known
radius, made with the Olympus microscope. Therefore,
in section V C 4, the theory is applied to observations
of spherosomes with the Olympus microscope, enabling
estimation of the spherosome size. Then, Brown’s ob-
servations of the spherosome size enables estimation of
properties of his microscope!

Section V C5 treats the Brownian motion and rotation
evinced in Fig. 8.

Lastly, in section VD, the construction of a ball lens
microscope with power close to that of Brown’s lens is
presented. Aided by a picture of amyloplasts taken with
it, the amyloplast size discrepancy is discussed.

FIG. 11: Airy function intensity IA(x) vs x.
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2. Lenses

Interestingly, Brown’s hypothesis and conclusion, of
the ubiquity and uniformity of the “molecules,” although
wrong, was so stimulating to him that it led to his fa-
mous discovery. As mentioned in the Introduction, when
he was viewing objects smaller than the resolution of his
lens, diffraction and possibly spherical aberration pro-
duced a larger, uniform, size[68].

We now discuss this further, summarizing mathemat-
ical results given in Appendices F, G. The main result
is Fig. 12, which will enable us to find the radius a of
a spherical object from the larger radius R of the image
observed through a lens or microscope. The theory shall
be compared to observations of polystyrene spheres made
with the Olympus microscope. Then, the results shall be
applied to the spherosome size discrepancy .

Also, using these ideas, we shall attempt a bit of histor-
ical detective work. From information supplied by Brown
about the size of his “molecules,” we can hazard a guess
at the radius b of the circular aperture that backed his
microscope lens, which is called the exit pupil.

For sufficiently small b, a point source of light’s image
is a diffracted intensity distribution, a circular pattern
of light. The intensity as a function of radial distance
r from the lens axis is given by the Airy function, Eq.
(F5):

IA(x) =

[
2J1(x)

x

]2

, (3)

where J1(x) is the Bessel function and x ≡ krb/f . Here,
f is the lens focal length and b/f is called the “numerical
aperture” of the lens. k = 2π/λ, where λ is the wave-
length of the light, traditionally taken for design pur-
poses as green light with λ = .55 µm. This expression
(and those which follow, such as Eq. (4)) give properly
scaled dimensions of the image. Dimensions actually seen
through the lens are larger by a factor of the lens mag-
nification.

The Airy function (3) is graphed in Fig. 11. The
intensity vanishes at the first zero of the Bessel function,
J1(3.83...) = 0. This defines the Airy radius rA. Setting
krAb/f = 3.83 allows one to find the lens’s Airy radius:

rA =
.61λ

b/f
. (4)

Since viewing is subjective, the Airy radius (4) may
not be perceived as the boundary of the Airy pattern
light intensity (the so-called “Airy disc”), but it is not
far off. For consistency with the non–Airy intensity pat-
tern that appears as b is increased, which also fall off
rapidly with distance but does not vanish, we shall de-
fine the light boundary as occurring at 5% of peak value.
Applied to the Airy function, since IA(3.01..) = .05,
this criterion puts the radius of the light boundary at
R ≡ (3.01/3.83)rA ≈ .8rA.

FIG. 12: For an object hole of radius a, R is the image circle’s
radius, defined as where the intensity is 5% of the intensity
at the center of the image circle. rA is the Airy radius.

As b grows, according to Eq.(4), the Airy radius rA

diminishes: this increases resolution. Moreover, as the
aperture grows, more light exits the lens: this increases
visibility. However, eventually as b is increased further,
visibility and resolution start to decrease. The light in-
tensity outside rA grows, and light intensity inside rA

decreases. This is due to spherical aberration: rays at
the outer edge of the exit pupil come to a focus closer to
the lens than do paraxial rays. A design choice, called the
Strehl criterion[70], suggests an optimal choice of b which
keeps spherical aberration at a tolerable minimum while
maximizing visibility: the intensity on the optic axis (in
the image plane that minimizes the observed disc radius)
should be 80% of IA(0) . The intensity shape is then still
close to the Airy distribution. In this case, the image is
described as “diffraction limited”: this shall be assumed
hereafter.

Consider now, instead of a point source, an extended
object, modeled by a hole of radius a illuminated by in-
coherent light. In geometrical optics, for an ideal lens,
each point on the object plane is imaged onto a point on
the image plane. Therefore, there will be a circular image
which appears also to have radius a. But, with an actual
lens, each point in the object plane becomes an Airy disc
in the image plane. These discs add like little spotlights
of radius rA, with centers uniformly distributed through-
out a circle of radius a. Therefore, the image radius R is
larger than a.

Fig. 12 graphs R/rA vs a/rA. This was obtained by
numerical evaluation of Eq.(G1), which gives the net in-
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tensity of the image pattern at any radius in the image
plane. Fig. 12 can be understood as follows.

For small a, a/rA ! .25, the centers of the Airy discs
that contribute to the intensity are so close together
that the intensity is essentially the Airy pattern. Thus,
R/rA ≈ .80 as discussed following Eq.(4).

As a/rA grows beyond ≈ .25, R starts to grow as well,
since the Airy disc centers are now spread out over a
non-negligible range. For example, we see from Fig. 12,
for a/rA ≈ .5 that R/rA ≈ 1, and for a/rA ≈ 1, that
R/rA ≈ 1.5.

For very large a/rA, the intensity at the center of the
image circle is contributed mostly by Airy discs whose
own centers lie within an Airy radius of the center. This
is true for points somewhat farther out from the center
so, at the center and to an extent beyond, the intensity
remains essentially constant. But, at distance a−rA from
the center, the intensity starts to drop.

At the “edge” (distance a from the center), the inten-
sity is about half that in the center, because only Airy
discs on the inner side of the edge contribute. The in-
tensity drops off further as the distance from the cen-
ter increases beyond a, reaching 5% of IA(0) at distance
R ≈ a+ rA. Thus (R−a)/rA asymptotically approaches
1.

In the graph of Fig.12, R/rA has its largest value
for a/rA = 4, at which (R − a)/rA ≈ .7. Not
shown on the graph are points {a/rA,≈ (R − a)/rA} =
{8, .8}, {17, .9}, {30, .99}.

3. Polystyrene Spheres

To provide an experimental counterpart to these cal-
culations, slides of .3 µm and 1 µm diameter polystyrene
spheres[72] ( diameter standard deviation less than than
3%) were prepared and digitally photographed using our
Olympus BX-50 microscope, along with a scale whose
line spacing is 2 µm. For this microscope, the manufac-
turer states the resolution is rA = .45 µm.

For .3 µm diameter spheres, since a = .15µm and
so a/rA = .33, we find that R/rA ≈ .86 from Fig.12.
Therefore, the spheres should appear as of diameter
2R ≈ 2(.86rA) ≈ .77 µm.

No pictures shall be given here, but the observations
are summarized. The digital image was enlarged until
it appeared as composed of pixels, each a .2 µm×.2 µm
square. Spheres which stood alone (for, many spheres
cluster) typically appeared as 3×3 pixel grids (dark in
the middle, and grey on the outside, with the surround-
ing pixels lighter and more-or-less randomly shaded), al-
though a 4×4 grid for a few could not be ruled out. Thus
the spheres appeared to be of diameter ≈ .6 µm, with er-
ror of a pixel size, consistent with the estimate.

For 1 µm diameter spheres, since a = .5 µm and
so a/rA = 1.1, we find that R/rA ≈ 1.7 from Fig.12.
Therefore, the spheres should appear as of diameter
2R ≈ 2(1.7rA) ≈ 1.5 µm.

In the unenlarged photograph, isolated spheres seemed
to be only slightly larger than 1 µm, perhaps 1.2-1.3 µm,
with a bright center (the spheres are transparent) and
dark boundary. However, when enlarged so that the pix-
els could clearly be seen, particularly the outermost light
grey ones, the spheres typically appeared as an 8×8 grid.
Thus the spheres appeared to be of diameter 1.6 µm,
with error of a pixel size, consistent with the estimate.

4. Spherosome Sizes and Brown’s Lens

In the previous section we have seen that the
polystyrene sphere sizes observed through our Olympus
microscope are larger than the actual sizes . Therefore,
we expect the same to be true of the spherosomes. More-
over we expect that the spherosome sizes observed by
Brown will be even larger than what we observed, due
to a larger Airy radius for Brown’s lens than the .45 µm
Airy radius for the Olympus microscope. The universal
size of Brown’s “molecules,” regardless of their source,
can be attributed to their being small enough so that
their Airy disc is what Brown observed.

We do not have an electron microscope picture of
spherosomes to indicate their actual sizes, as that proved
to be very difficult to obtain: that is a challenging project
for the future. Unlike amyloplasts which are structurally
robust and whose electron microscope picture we suc-
ceeded in obtaining (see Fig. (16), spherosomes are mem-
brane bound lipid droplets: when an attempt is made to
concentrate them by filtering so that there are sufficient
numbers to view, they coalesce, and appear as an amor-
phous mass.)

We therefore turn to estimate the actual spherosome
sizes using our observations through the Olympus micro-
scope As we have noted, according to Fig. 10, we ob-
served that most spherosomes appeared to cluster about
1±.1 µm in diameter, the largest being perhaps 1.3±.1
µm in diameter.

For the smallest spherosomes, we have R/rA ≈
(.9/2)/.45 ≈ 1. From Fig. 12 we read that therefore
a/rA ≈ .5, so their radius is a ≈ .5 × .45 ≈ .2 µm, i.e.,
their diameter is ≈ .4 µm.

For most spherosomes, we have R/rA ≈ (1/2)/.45 ≈
1.1. From Fig. 12 we read that therefore a/rA ≈ .6, so
their radius is a ≈ .6× .45 ≈ .27 µm, i.e., their diameter
is ≈ .54 µm.

For the largest spherosomes, we have R/rA ≈
(1.4/2)/.45 ≈ 1.6. From Fig. 12 we read that there-
fore a/rA ≈ 1.1, so their radius a ≈ 1.1 × .45 ≈ .5 µm,
i.e., their diameter is ≈ 1 µm.

Armed with these results, we may try to find some
properties of Brown’s lens. We assume that the minimum
size of his “molecules” corresponds to the Airy disc, i.e.,
they belong in the realm a/rA < .3 in Fig. 12 for which
R/rA ≈ .8. Since Brown quotes the minimum diameter
of his “molecules” as ≈ 1/20, 000 in≈ 1.3 µm, half this is
the radius R ≈ .65 µm, and so the Airy radius of Brown’s
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lens is deduced to be

rA = R/.8 ≈ .65/.8. ≈ .8 µm.

Then, from Eq. (4) we may conclude that the radius of
the exit pupil of his f = 1/32 in≈ .8 mm lens was

b =
.61λf

rA
=

.61× .55× .8
.8

≈ .35 mm.

As a consistency check, we note that Brown quoted
the maximum diameter of his “molecules” as ≈ 1/15, 000
in≈ 1.7 µm. Then, R/rA ≈ (1.7/2)/.8 ≈ 1.1. From
Fig.12, we read that this corresponds to a/rA ≈ .6.
Therefore, we deduce that the actual radius of these
largest spherosomes is a ≈ .6 × .8 ≈ .5 µm. This agrees
with the actual radius of the largest spherosomes we ob-
served.

5. Amyloplast Brownian Motion and Rotation

FIG. 13: Mean linear displacement ¯|x| in µm and mean an-
gular displacement ¯|θ| in degrees, vs R in µm, for amyloplasts
undergoing Brownian motion for 60 sec. The least squares fit
curves depicted here are given in Eq.(5).

We next turn to analysis of the observed Brownian
motion of the amyloplasts. In what follows, R is half the
length of the long axis of an amyloplast.

From Fig. 8, the x–displacement, y–displacement, and
θ–displacement of each amyloplast, over the one minute
interval, were found. Because of the possibility of over-
all fluid flow (assumed constant and irrotational in the

region containing the observed particles), the mean dis-
placement was calculated; it proved to be .053 µm in
the x-direction (negligible flow) and -.847 µm in the y-
direction. This was then subtracted from each displace-
ment, to give the true Brownian contribution.

A plot of mean linear displacement and a graph of
mean angular displacement for each R bin (.25 µm wide)
appears in Fig. 13. Smallest and largest R values repre-
senting too few data points were omitted (which is why
there are fewer data points representing ¯|θ| than ¯|x|). Fig.
13 was made with the Maple program (with labeling help
from the Appleworks program), and includes graphs of
the least squares fit to a power law A/RB , for each set of
data. The results, compared with the predictions given
in Eqs. 1, 2 (setting Reff ≡ R) are

¯|x| =
3.2

R.7
µm

µm compared with ¯|x| =
4.0

R.5
µm

µm,

¯|θ| =
130
R1.3

µm

◦
compared with ¯|θ| =

201
R1.5

µm

◦
. (5)

The powers in Eqs. (5) agree reasonably well, consid-
ering that no correction has been made for the ellipsoidal
nature of the particles. As discussed in Section III B and
Appendices B 5 and B 9, Reff for translation and rota-
tion of ellipsoids in Eqs. (1), (2) should be less than R
for a sphere by a factor that is different for the long and
short axes, and that varies with their ratio. No attempt
was made to correct for this effect, nor for the fact that
the observed amyloplast sizes are larger than the actual
sizes, just as in the case of the spherosomes.

Interesting studies, with appropriate selection of uni-
form particle sizes, can be made. The subject of Brown-
ian motion of ellipsoids, first studied by Perrin, is still of
interest[71].

The numerical coefficients in the comparable Eqs.(5)
differ because the last terms on the right–hand sides
of Eqs.(1),(2) assume the fluid in which the particles
are immersed is water. However, the amyloplasts move
in a fluid that is a mixture of water and the intra-
cellular medium, which emerged with the amyloplasts
from the pollen. That is, the measured coefficients are
proportional to 1/

√
ηfluid while the expressions based

upon Eqs.(1),(2) are proportional to 1/
√

ηwater. From
the displacement expressions in Eq.(5) we obtain for√

ηfluid/ηwater the value (4.0/3.2) ≈ 1.3, while from the
angular displacements this is (201/130) ≈ 1.5. These es-
timates of the fluid viscosity are in reasonable agreement,
especially considering the omission of an ellipsoidal cor-
rection mentioned above.

One last qualitative observation is worth mentioning.
Some wet-dry 400 grit sandpaper was used to grind to
powder some of a seashell, a rock, and a nickel. In all
cases, the powder (which was colored white or grey, while
the sandpaper was colored black, so the sandpaper grit
was not being observed), had some particles of apparent
sizes ! 1µm which were observed jiggling in water, just
as Brown said occurred for anything he ground up fine
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FIG. 14: Ball Lens Microscope Diagram

enough.

D. Ball Lens Microscope

Finally, we discuss construction of a single lens micro-
scope with a magnification comparable to Brown’s, and
some observations made with it.

Ground lenses of high magnification such as those
made by Bancks and Dollond are not readily available
nowadays. However, fortunately, precision small glass
spheres called ball lenses are readily available (they are
used for coupling lasers to optical fibers) that can be used
as high magnification lenses[73]. We purchased a ball lens
of 1 mm diameter and index of refraction 1.517[74]. The
focal length f of a sphere of radius R can be found from
the lensmaker’s formula[75] for a thick lens of radii R1

and −R2, thickness T and index of refraction n:

1
f

= (n− 1)
[ 1
R1
− 1

R2
+

(n− 1)T
nR1R2

]
. (6)

For T = 2R and R1 = −R2 = R, Eq. (6) yields

f = nR/2(n− 1). (7)

For our lens, f= .733 mm=1/34.6 inch, not far from the
f=1/32 inch of Brown’s lens.

The “microscope” is essentially the lens sandwiched
between two perforated supports. One support was made

as follows. A circle of 1” diameter was cut out of a 1/64”
(≈0.4 mm) thick aluminum sheet. A 0.8 mm. diameter
hole was drilled part way through its center, and then a
0.48 mm diameter hole was drilled all the way through.
Thus, the exit pupil radius was constructed to be 0.24
mm. Then, a small washer was made from a piece of
1/64” brass with a 1 mm diameter hole drilled through it.
The holes in the two pieces were aligned, and the pieces
secured to each other with Kapton polyimide tape. The
ball lens was placed in the resulting hole, supported by
the edges of the 0.48 mm hole and surrounded by the
washer.

The second support consisted of a piece of 3 mil (0.076
mm) brass shim stock with a 0.55 mm diameter hole in
the center, It was secured over the lens with more Kapton
tape to hold the lens in place and serve as the entrance
aperture.

The assembled “microscope” was then mounted with
more Kapton tape over the entrance aperture of a Log-
itech QuickCam Pro USB camera. This camera was cho-
sen from a large number of such “webcams” because the
front of its lens lies very close to the surface of the camera,
allowing a very small separation between the microscope
and the imaging camera. A 1/4”× 3”× 5” plastic sheet
was fashioned, and a hole was drilled through its center,
through which the microscope backed by the camera lens
protrudes: the body of the camera rests upon the plastic.
An inverted-L shaped bracket was attached to the plastic
sheet to hold the camera .

A U-shaped plastic stand, of dimensions slightly less
than 3” (the length of a microscope slide) was con-
structed from 1/4” plastic. Horizontal grooves (rabbets)
to support the slide were cut in the sides of the U just

FIG. 15: Ball Lens Microscope Setup.
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below the top edges. The plastic sheet holding the mi-
croscope/camera rests upon the top edges of the U, and
can be moved freely over the slide.

A small hole was drilled through one side of the U,
partly through and partly below the rabbet. Focus ad-
justment is achieved by placing a small wedge (e.g., a
toothpick) through the hole and under the slide. As the
wedge is moved in and out, it raises and lowers the slide
by a fraction of a millimeter. Light from a small micro-
scope illuminator, collimated to a 1” beam, is diffusely
reflected from a white surface on which the plastic stand
sits, through the slide and into the microscope/camera.

The setup is shown in Fig. 15. The plastic sheet sup-
porting the camera (cable going off to the left) lies in the
middle of the picture, slightly skewed to the stand. The
ball lens and its support, attached to the camera aper-
ture, lies within a hole in the middle of the plastic sheet,
and so is not visible, nor is the focus adjustment hole in
the side visible. The inverted L-shaped bracket that af-
fixes the camera, the rabbets which support a slide, and
a bit of a slide itself (just below the plastic sheet on the
left), the inverted U stand, as well as the light source and
its power supply, are visible.

1. Amyloplasts Seen With Ball Lens Microscope

Now we address the discrepancy between our observa-
tions with the Olympus microscope, summarized in Fig.
10, that the amyloplasts appear to be of average radius
(i.e., half-length) ≈ 2 µm, with maximum radius ≈ 3
µm, and Brown’s observations with his microscope, that
their radius range is ≈ 3–4 µm. We shall do so by show-
ing that the observations with the ball lens are essentially
the same as Brown’s. But, also, the electron microscope
picture Fig.16 of amyloplasts, while not depicting a large
sample, suggests that the size distribution measured with
the Olympus microscope is reasonably accurate.

For the ball lens, the Airy radius is rA = .61λf/b = 1.0
µm. This can also be seen in the graph of its intensity
versus distance in Appendix F 2, Fig. 20 (the B̄ = 2
curve). The exit pupil b=.24 mm is not the ideal size
to minimize spherical aberration according to the Strehl
criterion (discussed in Section V C 2 and Appendix F 2).
That ideal size is b=.19 mm, corresponding to the B̄ = 1
curve in Fig.20. However, its intensity is still reasonably
approximated by the Airy function, so we shall assume
that the considerations leading to Fig.12 are valid.

To check that rA = 1 µm, a slide containing 1 µm
diameter polystyrene spheres was observed and pho-
tographed. Another slide containing a scale with marks
10 µm apart was separately photographed. Both pho-
tographs were superimposed using the program Photo-
shop Elements 2. Using the program ImageJ, the image
of the spheres was enlarged so that the pixels could be
seen, and they were analyzed, as described for the spheres
photographed with the Olympus microscope in section
V C 3. The result was that the polystyrene spheres ap-

FIG. 16: Clarkia pulchella amyloplasts photographed with
the electron microscope.

peared to have diameter 2.1±.2µm.
For a theoretical comparison, with a/rA = .5/1 = .5,

one reads from Fig. 12 that R/rA ≈ 1.1. Therefore,
it is predicted that the apparent radius of the spheres
should be R = 1.1rA = 1.1µm, or diameter 2.2µm, in
good agreement with the observation discussed above.

Now we turn to compare the amyloplast sizes seen
with the Olympus microscope and amyloplast sizes seen
through the ball lens. Fig. 18 shows a portion of a photo
taken through the ball lens, of a slide containing amy-
loplasts that had emerged from a pollen grain (whose
out-of-focus edge appears at the lower left).

As described above, a photograph of a scale was su-
perimposed and the photograph was further enlarged so
that pixels were visible. The radius (half the length) of
44 amyloplasts was measured, 14 of which appear in Fig.
18 and 30 appear in another photograph of a different
scene. Fig.17 contains a graph of number of amyloplasts
in a .25 µm radius bin versus radius in µm.

From this graph, the amyloplasts appear through our
ball lens as of average radius ≈ 3 µm, with maximum
radius ≈ 4 µm. This is ≈ 1 µm larger than what was
observed with the Olympus microscope, Fig. 10, but
exactly what Brown said about the amyloplast sizes he
observed through his lens!

This excellent agreement, between the observations
with our ball lens and Brown’s observations with his lens
should be tempered by the realization that our lens has
rA ≈ 1 µm and exit pupil b = .24mm, whereas we have
deduced that Brown’s lens had rA ≈ .8 µm and exit
pupil b = .35 mm. However, it leaves little doubt that
Brown was seeing enlarged amyloplasts on account of the
diffraction and possible spherical aberration of his lens.
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FIG. 17: Number of amyloplasts in a .25 µm radius bin vs
amyloplast radius (= half amyloplast length).
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VI. THEORY

The appendices contain seven mathematical tutorials.
Appendix A contains a derivation due to Langevin, of

the well known expression, given first by Einstein[76], for
the mean-square displacement of an object undergoing
Brownian motion[77]. The method is easily applied to
give the mean-square angular displacement of an object
undergoing Brownian rotation.

These expressions depend upon the viscous force or vis-
cous torque on the object. Such fluid flow analysis is not
treated in places which treat the material of Appendix A.
The results for a sphere are derived in Appendix B[78].
For an ellipsoid, results are just cited[79].

Appendix C presents a derivation of geometrical op-
tics starting from the wave equation. The discussion
here, utilizing the WKB approximation in 3 dimensions,
does not seem to be given elsewhere, although the re-
sult (the eikonal approximation of geometrical optics) is
well known. Appendix D, a digression, applies this re-
sult to mirrors and lenses. It is emphasized, because of

FIG. 18: Amyloplasts photographed with the ball lens micro-
scope. The superimposed scale marks (the faint horizontal
lines) are 10µm apart.

the approximate solution’s abrupt discontinuities at the
boundaries of mirrors and lenses, that it must be modi-
fied in order to better satisfy the wave equation.

Appendix E contains the modification, obtaining from
Green’s theorem, in a standard way, the Huyghens-
Fresnel-Kirchhoff expression for a diffracted wave ema-
nating a lens[80]. Then, in Appendix F, this theory is
used to discuss lens imaging of a point source. Usually,
books on optics discuss the diffraction of a lens (due to
its limited aperture) and the spherical aberration of a
lens (due to the image made by rays at the rim of the
lens having a different focal plane than the image made
by near-axial rays) separately. Then, no expression is
given for their combined intensity. Here, diffraction and
spherical aberration receive a unified treatment. As a
concrete example, the theory is applied to what is seen
through a 1mm diameter ball lens used as a microscope.
The optimum choice for the exit pupil for such a lens, to
minimize spherical aberration, is discussed.

Appendix G applies these results for a point source to
an extended light source, an illuminated hole of radius a.
The apparent radius of the image is discussed, for small
and large a. As discussed in section III H, results are
obtained which illuminate (sic) Brown’s observations of
“molecular” size,


